Word Phonology of English in System Networks

There are two types of phonology for the words of English:
a phonaesthetic form in which the sounds of a word are intended to match natural sounds in creation, eg whoosh, moo, meow, boom, or cultural associations, eg flare, glare, blare; thump, lump, hump;
and arbitrary forms where there is absolutely no association between sound and sense, eg blow, cow, cat, loud distant noise.

Whereas the former is very interesting, it involves only a tiny minority of words in English; a presentation of phonaesthetic forms will need to be done separately. The vast majority of words display the arbitrary relationship between sound and sense; this presentation is an attempt to display the system networks of this majority of words in English.
Which English? Each accent has its own phonology; this presentation is confined to Standard Southern England Pronunciation ('Received Pronunciation').
All words? Not quite. Just monomorphemic words that have no phonaesthetic function. So words like take (but not taking), thank (but not thanks), rich (but not richer, richest, enrich, enrichment etc). Affixes have their own phonology, which will need to be presented separately.
System in word phonology is not like system in lexicogrammar or intonation, a set of options from which a speaker chooses to create meaning; system in phonology at the level of word (and also at the level of groups/phrases) is rather the specifications of what the speakers of a language recognize as having been established in, or 'chosen' by, the language to represent its words.
A full statement of the phonology of words of any language would ideally include statements about

- the permissible number of syllables (syllabic count) in a word,
- the permissible degrees of suprasegmental marking,
- the permissible kinds of structure in a syllable,
- the inventory of phonemes at the nucleus of the syllable and at the margin (or margins, in the case of closed syllables),
- their allophonic distribution
- and their permissible phonotactic distribution.

Readings

Tench, P. (Ed.) (1992). Studies in systemic phonology. London: Pinter.
Bowcher, W. \& Smith, B. (Eds.) (forthcoming) Recent studies in systemic phonology.
Tench, P (in prep) ‘The Phoneme and Word Phonology in SFL’, in Bartlett \& O'Grady The Routledge Handbook of Systemic Functional Grammar (email for a copy tenchp@cf.ac.uk)

What follows is an attempt to produce system networks for the phonology of English words

Syllable Count and Suprasegmental Marking

Most English (monomorphemic) words contain either 1, 2 or 3 syllables; a few contain 4 syllables - they are mainly loan words and names or words of Greek origin, eg catamaran, Madagascar, catastrophe, apocalypse. Even fewer contain 5 syllables, all loan words and names, eg abracadabra, hippopotamus, mulligatawny, Devanagari, Ystalyfera. There is always one syllable that is strong, ie with primary stress, a syllable made more prominent than all the others. There is also a potential additional 'secondary' degree of stressing. All other syllables are unstressed (weak). All the permissible options are represented in this network.

Syllable structures

Strong, stressed, syllables in English always consist of at least a vowel, with up to 3 consonants preceding it and with up to 3 consonants following. (Polymorphemic words may have up to 4 in final position, eg texts /tzksts/, glimpsed /glimpst/.)
Weak, unstressed, syllables have a slightly smaller set of possible structures, but it does include syllabic consonants $/ I, n, m /$.

Syllable Peaks

In strong syllables, there must a 'strong' vowel as syllable peak; however, short vowels must always be followed by a consonant ('closed syllables'), whereas long vowels can occur in both 'closed' and 'open' syllables.
In weak syllables, there is a much smaller set of peaks, which may either be a 'weak' vowel or a syllabic consonant.
For examples, see the preceding network.

Syllable Margins; initial position

Initial margins may consist of 1, 2 or 3 consonants; in the case of 3 consonants, the first must be $/ \mathrm{s} /$.
There is a primary set of initial margins which can precede any vowel; and also a secondary set that can only precede $/ \mathrm{j}+\mathrm{u}$: $, \mathrm{v}, \mathrm{v}, \mathrm{u} /$.

Syllable Margins: final position

The syllable-final inventory differs from the syllable-initial by excluding $/ \mathrm{h}, \mathrm{j}, \mathrm{w} /$ and $/ \mathrm{r} /$ (in non-rhotic SESP) and including $/ \mathrm{y} /$.
The system for double-consonant final clusters in monomorphemic words allows any of the final singletons to be preceded by /l/, except /g, ð, z, 3, y/; also many combinations of plosive, fricative and nasal followed by plosives and fricatives. One combination, /dz/, only now occurs in the one word adze, which itself is almost obsolete. (It might also be noted here that epenthetic /t/ follows /n/ in month and tense for many speakers, thus making them triple-consonant clusters.)
The system for triple-consonant clusters allows for a small number of the double clusters to be preceded by /I/ or a nasal; also /kst/ as in text.

Phoneme Inventories

A system network of the strong vowels of Southern England Standard Pronunciation

The network for weak vowels is very much simpler: that for closed syllables is shown below left, and that for open syllables below right:

A system network of the syllable-initial consonants of Southern England Standard Pronunciation

The brackets around $/ 3 /$ indicate its marginal status in the syllable-initial system; brackets would not be required in the network for the syllable-final system. The syllable-final system would lack $/ \mathrm{h}, \mathrm{w}, \mathrm{j}, \mathrm{r} /$, but would gain $/ \mathrm{h} /$.

Allophonic Distribution

Two examples will have to suffice.

A system network for /p/ might be presented as follows, with square brackets [] containing an allophonic transcription:

where \rightarrow means 'realized as', . indicates a syllable boundary, _ the 'slot' occupied by the phoneme, and \# a word boundary/silence.

Similarly, English /b/:

It would then be possible to present such networks for each consonant and vowel phoneme of English as part of a full presentation of English word phonology.

Phonotactic charts

Full phonotactic charts appear in Gimson (1989: 241-256), but it should be noted that they do include inflected forms of words and hence are not strictly monomorphemic.

Gimson, A. C. (1989) An introduction to the pronunciation of English. $4^{\text {th }}$ ed. London: Edward Arnold

[^0]August 2014

[^0]: Paul Tench
 Retired Senior Lecturer
 Centre for Language and Communication Research
 Cardiff University

